

Using DocInput and DocOutput Objects
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscDocInputOverviewsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmscDocInputOverviewsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmscDocInputOverviewsS"}

The ActiveX™ Controls include several controls which allow you to connect to external servers (the
Internet) and download files. To facilitate the transfer of data, the DocInput and the DocOutput
objects have been created. These objects allow you to stream data into or out of controls through the
DocInput and DocOutput events. Using the various properties and methods of these objects, you can
determine the state of the data stream and direct it accordingly.

Possible Uses
The DocInput and DocOutput objects can be used in the following scenarios:

· To stream a message from a news server into a container.
· To stream a file retrieved from an HTTP site directly to a remote FTP site.
· To post a message to a news server.

Scenario: Use the DocOutput Object to Retrieve an NNTP Document
A common task is to download messages from a remote news server. The steps to downloading a
message using the DocOutput object are as follows:

1. Invoke the GetArticleByArticleNumber method.
2. The DocOutput event occurs with the DocOutput object as an argument
3. The DocOutput passes a reference to a DocOutput object.
4. Determine the state of the data stream with the DocOutput object's State property.

Setup
The following code assumes that you have successfully logged on to a news server, entered a news
group, and retrieved a list of all messages and their numbers. For more information on using the
NNTP control, see "Using the NNTP Client control." Additionally the following controls are used:

1. NNTP control named "NNTP1."
2. TextBox control named "txtArticleNumber."

Invoke the GetArticleByArticleNumber Method
The code below invokes the GetArticleByNumber method to begin retrieving a message.
Sub GetArticleByNumber_Click()

NNTP1.GetArticleByArticleNumber txtArticleNumber
End Sub

The DocOutput Event Occurs with the DocOutput Object as an Argument
If the command is successful, the server responds by sending back the article message. In turn, the
NNTP control's DocOutput event occurs. The DocOutput event passes a reference to the DocOutput
object.

Route the Data Stream Using the DocOutput Object's State Property
The DocOutput object has a State property which indicates the state of the data stream. The code
below uses the Select statement with State property constants to determine how to route the data
stream. When the transfer begins (icDocBegin), a file is opened for input. As data arrives
(icDocData), it is routed into the file. When the transfer ends (icDoc, the file is closed.
Private NNTP1_DocInput(DocInput As DocInput)

Dim vtData As Variant' Variable for data.

Select Case DocInput.State
Case icDocNone ' No transfer in progress.

Exit Sub
Case icDocBegin

' Open a file for input.
Open "messages.txt" For Input As #1

Case icDocHeaders ' Document headers are being
' transferred.

' Add the Header to the DocHeaders collection.
Case icDocData ' One block of data is

' transferred.
' Use the Getdata Method to retrieve the data
DocInput.GetData vtData, vbByte + vbArray

Case icError
' If it's an error, use the icErrors collection.
MsgBox icErrors.Description

Case icDocEnd

End Case

End Sub

The code above demonstrates the basics of getting data from a control that uses the DocOutput
object.

Scenario 2: Route Data to a File Using the DocLink Property
If the DocOutput.DocLink property is assigned to a DocInput.DocLink property, data is transferred
between the objects. If the DocLink property is not assigned, no data linking occurs, but data is
available via an output file and/or data streaming.

All three forms of output can be used in any combination: an output file (FileName property), data
linking (DocLink property), and data streaming (DocOutput event).

To stream data directly from one control to another, you can bypass the DocOutput object entirely by
using the DocLink property. The steps required to do this are:

1. Assign the DocLink property before invoking the GetDoc method.
2. Invoke the GetDoc method.

Assign the DocLink Property Before Invoking the GetDoc Method
The DocInput and the DocOutput objects both have a DocLink property. You can use this property
to stream data directly from one control's DocInput object to another control's DocOutput object.

To do this, assign the DocLink property of a DocOutput object to the DocLink property of a
DocInput object before invoking the GetDoc method. This causes data output from the DocOutput
object to be used as the data input for the DocInput object. In the Visual Basic code below, the
DocLink property of an FTP control is set to the DocLink property of an HTTP control:

ftp1.DocInput.DocLink = HTTP1.DocOutput.DocLink

Using the icError Object and icErrors Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscUsingIcErrorsC"}

The icError Object and the icErrors collection are provided to store and access errors that originate
from a network. Use the Errors property to access the icErrors collection.

Possible Uses
You can use the icErrors collection in the following scenarios:

· To retrieve all errors that occur as a document is retrieved using the GetDoc method.
· To retrieve all errors that occur when a message is sent using the SendDoc method.

Scenario: List All Errors that Occur Retrieving a Document with the FTP
Control
When retrieving a document using the FTP control, a variety of errors can occur. To process the
errors, use the icErrors collection. The steps to do this are as follows:

1. With the FTP Client control, invoke the GetFile method.
2. Use the Select Case statement in the DocOutput event to examine the State property of the

DocOutput object.
3. If the State property is icError then iterate through the icErrors collection of the FTP control.

Setup
The scenario presumes you are using the FTP control and have successfully connected to a remote
FTP site. For more information on doing this, see "Using the FTP Client Control." The Visual Basic
code also assumes the presence of the following controls:

· FTP Client control named "FTP1."
· CommandButton control named "cmdGetFile."
· TextBox control named "txtRemote."
· TextBox control named "txtLocal."
· TextBox control named "txtErrors."

With the FTP Client Control, Invoke the GetFile Method
To retrieve a file from a remote server, you can use the GetFile method. This method requires two
arguments, the name of the remote file, and the name of the file as it will appear on the local
machine. The code below invokes the GetFile method using the contents of two TextBox controls to
supply the argument.
Private Sub cmdGetFile_Click()

FTP1.GetFile txtRemote, txtLocal
End Sub

Use the Select Case Statement in the DocOutput Event to Examine the State Property
of the DocOutput Object
In response to the GetFile method, the DocOutput event occurs. Each occurrence of the DocOutput
event passes a reference to the DocOutput object. You can examine the State property of the
DocOutput object to determine what to do with the data associated with the object. For example, if
the State property is icError (4), examine each icError object in the icErrors collection.

The code below examines the State property of the DocOutput object using the Select Case
statement. If the State is icError, code to handle the error would be placed under the Case
statement.

FTP1_DocOutput(ByVal DocOutput As DocOutput)

Select Case DocOutput.State
Case icDocNone

' No document, so do nothing.

Case icDocError
' Handle errors here.

End Select

End Sub

If the DocOutput Sate is icError then Iterate Through the icErrors Collection of the
FTP Control
The icErrors collection can be referenced through the Errors property of the FTP control. To handle
the error, the code below uses the For Each statement to iterate through each member of the
icErrors collection.
FTP1_DocOutput(ByVal DocOutput As DocOutput)

Select Case DocOutput.State
Case icDocNone

' No document, so do nothing.

Case icDocError
Dim errCol As icErrors ' icErrors variable.
Set errCol = FTP1.Errors ' Set the variable.

' Iterate through the collection and place
' results in a textbox control.
For Each icError In errCol

txtErrors = txtErrors & icError.Code & _
":" & icError.Description & vbCrLf

Next
End Select

End Sub

Source Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSourcePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSourcePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSourcePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSourcePropertyS"}

The vbObject that the most recent error applies to, or vbEmpty. Implementation is OCX-dependent.
Unless specified by the OCX Control documentation, the value for Source is vbEmpty. Read-only
and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Source

Visual FoxPro Object.Source

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

None Variant

Visual FoxPro

Suspended Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSuspendedPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSuspendedPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSuspendedPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSuspendedPropertyS"}

Returns a value that indicates whether a document transfer is currently suspended or not.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Suspended

Visual FoxPro Object.Suspended

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

The Suspended property settings are:

Argument Description
True The transfer is suspended.
False The transer is not suspended.

Data Type
Boolean.

Remarks
The transfer is suspended if the Suspend method of the DocInput object is called.

icError Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjErrorObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjErrorObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjErrorObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjErrorObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjErrorObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjErrorObjectS"}

An icError object contains error messages.

icErrors Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolErrorsCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolErrorsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolErrorsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolErrorsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolErrorsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolErrorsCollectionS"}

The icErrors collection is used to access errors generated by the last error condition. Some common
items in the collection are Protocol error and Transport error.

A protocol error provides general error information at a protocol level. A transport error gives specific
detail (where applicable) of the last error that occurred in the transport layer. Protocol and transport
don’t contain any data if there is no error of that type. Once an error is processed, the collection can
be cleared by the Clear method, which also resets the Source property.

Code Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCodePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCodePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCodePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCodePropertyS"}

Returns the Integer error code for the given error type. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Code

Visual FoxPro Object.Code

Return Values
Development
Tool

Default
Value

Data Type

Microsoft Access
and Visual Basic

0 Long

Visual FoxPro 0 Numeric

Description Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDescriptionPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDescriptionPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDescriptionPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDescriptionPropertyS"}

Returns the text description of the error. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Description

Visual FoxPro Object.Description

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

Empty string String

Visual FoxPro Empty string Character

Type Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTypePropertyS"}

Returns a string label for the type of error, with standard (predefined) labels such as "protocol" and
"transport". Individual controls can have additional Type labels. Read-only and unavailable at design
time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Type

Visual FoxPro Object.Type

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

Empty string String

Visual FoxPro Empty string Character

DocHeaders Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDocHeadersCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolDocHeadersCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDocHeadersCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDocHeadersCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolDocHeadersCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDocHeadersCollectionS"}

A DocHeaders collection contains a collection of DocHeader objects.

Remarks
You commonly add several DocHeader objects to a collection before invoking the SendDoc method.
The most effecient method of doing this is to first create a Docheaders variable, instantiate the
variable (using the Set statement), then add objects to the collection. This is demonstrated in the
code below:
Dim docHeads As DocHeaders ' Create variable.
Set docHeads = New DocHeaders ' Instantiate variable.
With DocHeads

.Add "From", "jamesDean@anycom.com"

.Add "To", "marilyn@nothercom.com"

.Add "Subject", "Hello"
End With

Add Method (DocHeaders Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddDocHeaderC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddDocHeaderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddDocHeaderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddDocHeaderS"}

Adds a new DocHeader object to the DocHeaders collection. The Name and Value arguments are
converted to type String and become the Name and Value properties of the DocHeader object.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Add Name, Value

Visual FoxPro Object.Add(Name, Value)

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft Access
and Visual Basic

Name Variant Attribute name.

Value Variant Value for the specified
attribute name.

Visual FoxPro Name Attribute name.
Value Value for the specified

attribute name.

Remarks
To add a DocHeader object to the DocHeaders collection, create an object variable of type
DocHeaders, initialize the variable, then add DocHeader objects:

Dim dchX As DocHeaders
Set dchX As New DocHeaders
dchX.Add("Subject", "Development")
dchX.Add("Name", "Joe@MyCom.Com")

Item Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthICPItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthICPItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthICPItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthICPItemS"}

Returns a specific member of a collection. The Item method is the default method for a collection.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Item(index)

Visual FoxPro Object.Item(index)

Arguments
Development
Tool

Argument Data Type Description

Microsoft Access
and Visual Basic

Index Variant Identifies the item
in the collection.

Visual FoxPro

Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthICPClearC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthICPClearX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthICPClearA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthICPClearS"}

Clears all objects in a collection.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Clear

Visual FoxPro Object.Clear()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
To remove one object from a collection, use the Remove method.

Remove Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthICPRemoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthICPRemoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthICPRemoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthICPRemoveS"}

Removes a member from a collection object.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Remove index

Visual FoxPro Object.Remove(nIndex)

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft
Access and
Visual Basic

index Integer Required. An expression that
specifies the position of a
member of the colllection.

Visual FoxPro nIndex Numeric Required. A numeric
expression that specifies the
position of a member of the
colllection.

Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproICPCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproICPCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproICPCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproICPCountS"}

Returns the number of objects in a collection. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Count

Visual FoxPro Object.Count

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

None Long

Visual FoxPro None Numeric

DocHeader Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDocHeaderObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDocHeaderObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDocHeaderObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDocHeaderObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDocHeaderObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDocHeaderObjectS"}

A DocHeader object contains a Name property and a Value property which together form a single
MIME (Multipurpose Internet Mail Extensions) header.

Remarks
The MIME protocol was established to accommodate the transfer of multi-part mail messages. For
example, a document may consist of both an HTML text section and a sound file in the .WAV format.
A DocHeader object contains the information on what kind of data is contained in a particular mail
message.. The DocHeader object contains just two properties, the Name and Value properties.
Together, they create a single header.

The DocHeader object supports the following properties:

Property Description
Name The item name or MIME header label (not including the

colon character). DocHeader objects represent individual
name and value pairs in MIME headers.

Value The item value which in MIME headers is the text after the
label, colon character, and any leading spaces.

Name Property (DocHeader Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNamePropertyS"}

Returns or sets the item name or MIME (Multipurpose Internet Mail Extensions) header label (not
including the colon character). This property can be used as an identifier for items in the DocHeaders
collection. Read/write and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Name

Visual FoxPro Object.Name

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

Empty string String

Visual FoxPro Empty string Character

Value Property (DocHeader Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproValueDocHeaderObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproValueDocHeaderObjectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproValueDocHeaderObjectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproValueDocHeaderObjectS"}

Returns or sets the value which in MIME (Multipurpose Internet Mail Extensions) headers is the text
after the label, colon character, and any leading spaces.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Value [= string]

Visual FoxPro Object.Value[= cText]

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String

Text Property (DocHeaders Collection)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTextPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTextPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyS"}

Returns the complete text of all headers in standard MIME (Multipurpose Internet Mail Extensions)
header format. Read/write and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Text [= String]

Visual FoxPro Object.Text[= cExpression]

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

None String

Visual FoxPro None Character

Remarks
The standard text format for MIME headers follows each header with a CRLF terminator, and
separates the Name and Value of each header by a colon and single space character (": ").

If the Text property is set, all collection items will be replaced.

DocInput Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDocInputObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDocInputObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDocInputObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDocInputObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDocInputObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDocInputObjectS"}

The DocInput object provides input information for a document being transferred. All controls with the
DocInput property can access properties and invoke methods of the DocInput object. In such
controls, a reference to the DocInput object is also passed as an argument of the DocInput event.

Remarks
The DocInput object provides a more powerful interface than the basic capabilities of the
RequestDoc method for the HTML control. However, you can use the basic functions of the control
without knowledge or use of the DocInput object.

DocOutput Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDocOutputObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDocOutputObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDocOutputObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDocOutputObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDocOutputObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDocOutputObjectS"}

The DocOutput object provides output information for a document being transferred. All controls with
the DocInput property can access properties and invoke methods of the DocOutput object. In such
controls, a reference to the DocOutput object is also passed as an argument of the DocOutput event.

Remarks
The DocOutput object provides a more powerful interface than the basic capabilities of the
RequestSubmit method of the HTML control. However, you can use the basic functions of the control
without knowledge or use of the DocInput object.

Filename Property (DocInput, DocOutput Objects)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFilenamePropertyDocInputObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFilenamePropertyDocInputObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFilenamePropertyDocInputObjectA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilenamePropertyDocInputObjectS"}

Returns or sets the name of a local file containing the document to be transferred or sent.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.FileName [= string]

Visual FoxPro Object.FileName[= cExpression]

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String

Remarks
The FileName property can be set before calling either the GetDoc or SendDoc method in a
particular control or it can be passed as an argument to the method. If it is passed as an argument,
the FileName property is set to the argument value.

DocInput Specific Remarks
When used as a property of the DocInput Object, input data can only be supplied through an input
file, data linking, or data streaming. Property contents determine how the data is supplied. If the
FileName property is not empty, it is used as the input file. If the DocLink property is not null, data
linking is used. Otherwise, data streaming via the DocInput event is used.

When the FileName property is set to a nonempty value, the DocLink property is automatically set to
empty.

DocOutput Specific Remarks
When used as a property of the DocOutput Object, if the FileName property is not empty, data is
appended to the file as it is transferred. If the FileName property is empty, no data is written to an
output file. However, data is available via data linking and/or data streaming.

All three forms of output can be used in any combination: an output file (FileName property), data
linking (DocLink property), and data streaming (DocOutput event).

State Property (DocInput, DocOutput Objects)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStatePropertyDocInputDocOutputObjectsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStatePropertyDocInputDocOutputObjectsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproStatePropertyDocInputDocOutputObjectsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproStatePropertyDocInputDocOutputObjectsS"}

Returns a value that indicates the current state of the document transfer. Read-only, and unavailable
at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.State

Visual FoxPro Object.State

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The State property is maintained by the specific control. Each time it changes, the DocInput event is
activated. The State property is always set to one of the values listed here.

Name Value Description
icDocNone 0 No transfer is in progress.
icDocBegin 1 Transfer is being initiated
icDocHeaders 2 Document headers are

transferred (or requested).
icDocData 3 One block of data is transferred

(or requested).
icDocError 4 An error has occurred during

transfer.
icDocEnd 5 Transfer is complete (either

successfully or with an error).

DocLink Property (DocOutput Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDocOutputDocLinkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDocOutputDocLinkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDocOutputDocLinkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDocOutputDocLinkS"}

Returns a reference to the DocLink property when data linking is used. Read-only and unavailable at
design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.DocLink

Visual FoxPro Object.DocLink

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The DocInput and the DocOutput objects both have a DocLink property. You can use this property
to stream data directly from one control's DocInput object to another control's DocOutput object.

To do this, assign the DocLink property of a DocOutput object to the DocLink property of a
DocInput object before invoking the GetDoc method. This causes data output from the DocOutput
object to be used as the data input for the DocInput object. In the Visual Basic code below, the
DocLink property of an FTP control is set to the DocLink property of an NNTP control:
Private Sub cmdFTPGetDoc_Click()

ftp1.DocInput.DocLink = nntp1.DocOutput.DocLink
ftp1.GetDoc

End Sub
If the DocOutput.DocLink property is assigned to a DocInput.DocLink property, data is transferred
between objects. If the DocLink property is not assigned, no data linking occurs, but data is available
via an output file and/or data streaming.

All three forms of output can be used in any combination: an output file (FileName property), data
linking (DocLink property), and data streaming (DocOutput event).

GetData Method (DocInput, DocOutput Objects)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDocInputGetDataC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthDocInputGetDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthDocInputGetDataA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDocInputGetDataS"}

Retrieves the current block of data being transferred when the DocInput or DocOutput event occurs.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.GetData data, [type]

Visual FoxPro Object.GetData(eData [, nDataType])

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft
Access and
Visual Basic

data Variant Where retrieved data will be
stored after the method returns
successfully. If there is not
enough data available for
requested type, Data will be set
to Empty.

type Long Optional. Type of data to be
retrieved. Set Settings below
for a list of types supported.

Visual FoxPro eData Variant Where retrieved data will be
stored after the method returns
successfully. If there is not
enough data available for
requested type, eData will be
set to Empty.

nDataType Numeric Optional. Type of data to be
retrieved. Set Settings below
for a list of types supported.

Settings
The settings for type are:

Description Visual C++ Visual Basic Type
Byte VT_UI1 vbByte
Integer VT_I2 vbInteger
Long VT_I4 vbLong
Single VT_R4 vbSingle
Double VT_R8 vbDouble
Currency VT_CY vbCurrency

Date VT_DATE vbDate
Boolean VT_BOOL vbBoolean
SCODE VT_ERROR vbError
String VT_BSTR vbString
Byte Array VT_ARRAY|VT_UI1 vbArray + vbByte

Remarks
The GetData method can only be called during handling of the DocOutput event, when the State
property is set to icDocData (3).

GetData Method, DocOutput Event Example

The example below uses a Select Case statement to determine when data is being sent through the
DocOuput object. If the DocOuput object's State is icDocData (3), the GetData method is invoked.
Sub NNTP1_DocOutput(DocOutput As DocOuput)

Dim vtData As Variant ' Data variable.

Select Case DocOutput.State
Case icDocBegin

' Open a file to write to.
Open "messages.txt" For Output As #1

Case icDocData
' Use the GetData method to retrieve data.
DocOutput.GetData vtData, vbString
' Write data to the file.
Print #1

Case icDocEnd
' Close the file.
Close #1

End Select

End Sub

SetData Method (DocOutput Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDocOutputSetDataC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDocOutputSetDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDocOutputSetDataA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDocOutputSetDataS"}

Overrides the next data buffer to be transferred when the DocOutput event is activated.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.SetData data

Visual FoxPro Object.SetData(data)

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

data Next block of data to be sent. For
binary data, byte array should be
used.

Visual FoxPro data Next block of data to be sent. For
binary data, byte array should be
used.

Remarks
SetData can be called during DocOutput event handling (when the State property is set to
icDocData) to change the next buffer of data to be transferred. Calling SetData modifies the data
received by any DocInput objects linked to this DocOutput object using data linking, as well as the
data written to the output file if one is specified via the FileName property.

PushStreamMode Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPushStreamModeMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPushStreamModeMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPushStreamModeMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPushStreamModeMethodS"}

Performs the next step of the document transfer. This method is called when you implement data
streaming.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.PushStream

Visual FoxPro Object.PushStream

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None.

Remarks
User implementation of data streaming is handled by the PushStreamMode property and the
PushStream method. These interfaces are only important if you implement data streaming.

Input data streaming can be implemented in two ways:

The PushStreamMode property is set to False (the default), and data is specified when the DocInput
event is activated. You should not call PushStream.

PushStreamMode is set to True, and when data is available call the PushStream method.
PushStream is called to perform the next step of the document transfer. PushStream changes the
State property based on the next step of the transfer, activates the DocInput event as needed, and
returns to wait for the next call to PushStream.

When using this technique, instead of setting document information in the DocInput event handler, set
document information before calling PushStream. For example, when transferring data, invoke the
SetData method before calling PushStream.

When using an input file (FileName property) or data linking (DocLink property), the control calls the
PushStream method. In these cases you can not call it.

BytesTotal Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBytesTotalPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBytesTotalPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBytesTotalPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBytesTotalPropertyS"}

Returns the total bytes to be transferred or zero, if not available. Read-only and unavailable at design
time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.BytesTotal

Visual FoxPro Object.BytesTotal

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

Zero Long

Visual FoxPro 0 Numeric

Remarks
The BytesTotal property is available as soon as document transfer begins. The property value does
not change until a new transfer begins. This value is/can be zero if the size of the document is
unknown.

BytesTransferred Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBytesTransferredPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBytesTransferredPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBytesTransferredPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBytesTransferredPropertyS"}

Returns the number of bytes transferred. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.BytesTransferred

Visual FoxPro Object.BytesTransferred

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
Development
Tool

Default
Value

Data Type

Microsoft Access
and Visual Basic

Empty string Long

Visual FoxPro 0 Numeric

Remarks
The BytesTransferred property is updated as document transfer progresses. This property value is
set to zero when a new transfer begins, and it is updated before the DocInput or DocOuput event
occurs. The value is not changed after the transfer is complete (it will reflect the total for the last
transfer when no transfer is in progress).

SetData Method (DocInput Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetDataMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetDataMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetDataMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetDataMethodS"}

Specifies the next data buffer to be transferred when the DocInput event occurs.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.SetData Data

Visual FoxPro Object.SetData(Data)

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

Data Next block of data to be sent. For
binary data, byte array should be
used.

Visual FoxPro Data Next block of data to be sent. For
binary data, byte array should be
used.

Remarks
SetData is generally invoked during DocInput event handling (when the State property is set to
icDocData) to specify the next buffer of data to be transferred. SetData can also be invoked before
SendDoc to specify the initial buffer of data to be transferred. This is an alternative to passing the
InputData argument to SendDoc. If you implement data streaming using PushStreamMode, you can
also invoke SetData before PushStream.

When using an input file (FileName property) or input link (DocLink property), SetData can be
invoked during DocInput event handling to change the next buffer of data to be transferred. Calling
SetData in these cases modifies the data transferred to the target document.

Suspend Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSuspendMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSuspendMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSuspendMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSuspendMethodS"}

Suspends or resumes document transfer.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Suspend suspend

Visual FoxPro Object.Suspend(lSuspend)

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

suspend Indicates whether to suspend or
resume transfer. See Settings
below.

Visual FoxPro lSuspend Indicates whether to suspend or
resume transfer. See Settings
below.

Settings
The settings for Suspend are:

Argument Description
True The transfer is suspended.
False The transfer is resumed.

Remarks
Calls to Suspend with True and False arguments must be balanced. For example, if Suspend(True) is
called twice, Suspend(False) must be called twice to resume transfer.

PushStreamMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPushStreamModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPushStreamModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPushStreamModePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPushStreamModePropertyS"}

Returns or sets a value which indicates whether the stream is in push or pull mode.

· For the DocOutput object, this property is read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.PushStreamMode [= boolean]

Visual FoxPro Object.PushStreamMode[= lExpression]

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

The PushStreamMode property settings are:

Setting Description
True The control is in Push mode.
False The control is in Pull mode.

Data Type
Boolean

Remarks
The PushStreamMode of the DocOutput object is not needed by the user. The DocOutput Object
doesn't have a PushStream method.

DocInput Object Specific Remarks
User implementation of data streaming is handled by the PushStreamMode property and
PushStream method. These interfaces are only important if you implement data streaming.

Input data streaming can be implemented in two ways:

Set the PushStreamMode property to False (the default) and data is specified when the DocInput
event is activated.

Set the PushStreamMode property to True before initiating the document transfer. See the
PushStream method for more information on this technique.

When using an input file (FileName property) or data linking (DocLink property), the control sets the
PushStreamMode property. In this case, you can not set it.

DocLink Property (DocInput Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDocLinkPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDocLinkPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDocLinkPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDocLinkPropertyS"}

Returns or sets a copy of a DocOutput.DocLink property when data linking is used or empty if data
linking is not used. Read/write and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.DocLink [=string]

Visual FoxPro Object.DocLink[= string]

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

None DocLink

Visual FoxPro None

Remarks
The DocLink property can be set before calling the SendDoc method in a particular control. It should
be set to the DocLink property of a DocOutput object. This causes data output from the DocOutput
object to be used as the data input for the DocInput object.

Input data can only be supplied through an input file, data linking, or data streaming. Property
contents determine how the data is supplied. If the FileName property is not empty, it is used as the
input file. If the DocLink property is not empty, data linking is used. Otherwise, data streaming via the
DocInput event is used.

When the DocLink property is set to a nonempty value, the FileName property is automatically set to
empty.

Headers Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHeadersPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHeadersPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHeadersPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeadersPropertyS"}

Returns a reference to a the DocHeaders collection. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Headers

Visual FoxPro Object.Headers

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
DocHeaders.

Remarks
The contents of the DocHeaders collection can be modified before calling the GetDoc or SendDoc
method of the specific control, or it can be passed as an argument to these methods. If it is passed as
an argument, the items in the DocInput.Headers collection are replaced with those in the collection
specified in the argument.

DocHeader Objects
The DocHeaders collection contains DocHeader objects, each of which represents a MIME
(Multipurpose Internet Mail Extensions) header and contains a Name and Value property. For
example, an item with a Name of content-type will have a Value indicating the document type
such as "text/plain" or "image/gif". The headers used depends on the protocol, however two
headers are common to all protocols: content-type and content-length.

content-type indicates the document type as specified by MIME.

content-length indicates the size of the document in bytes.

DocOutput Object Specific Remarks
The contents of the DocHeaders collection are set during the document transfer to headers that
describe information about the output document. When SendDoc is called for protocols that always
send a reply document, these headers describe information about the reply document.

Authenticate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAuthenticateEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAuthenticateEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAuthenticateEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAuthenticateEventS"}

Occurs after an Authenticate method is invoked.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_Authenticate ()

Visual FoxPro PROCEDURE Object.Authenticate
Visual C++ void dialogclass::OnAuthenticateControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the ReplyString property to determine the server reply after authentication

Authenticate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAuthenticateMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAuthenticateMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAuthenticateMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAuthenticateMethodS"}

Authenticates the user based on the parameters passed. If no parameters are passed, the UserId
and Password properties are used. When authentication process is terminated, the Authenticate
event is activated.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Authenticate [UserID,] [Password]

Visual FoxPro Object.Authenticate([cUserID] [, cPassword])
Visual C++ void Authenticate(const VARIANT& UserId, const

VARIANT& Password);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data Type Description

Microsoft Access
and Visual Basic

UserID String Optional. User
identification string
to use for
authentication
For Input only.

Password String Optional.
Password to use
for authentication.
For Input only.

Visual FoxPro cUserID Character
expression

Optional. User
identification string
to use for
authentication
For Input only.

cPassword Character
expression

Optional.
Password to use
for authentication.
For Input only.

Visual C++ UserID VARIANT Optional. User
identification string
to use for
authentication
For Input only.

Password VARIANT Optional.
Password to use
for authentication.

For Input only.

Remarks
Optional arguments to this method override the values from corresponding UserId and Password
properties. The values of the properties will not change. If you omit any of the arguments, the value
from a corresponding property will be used to provide authentication.

Authenticate Method, Authenticate Event Example

The Authenticate method can take two arguments which are supplied by the UserId and Password
properties. The example shows a typical use of the Authenticate method when logging onto public
FTP servers. It's common to use "Anonymous" as the UserId, and the user's email address to log on.
Private Sub cmdAuthenticate_Click()

FTP1.UserId = "Anonymous"
FTP1.Password = "JohnD@internet.com"
FTP1.Authenticate ' The method uses the values

' supplied by the UserID and
' Password properties.

End Sub

Private Sub FTP1_Authenticate()
MsgBox FTP1.ReplyString ' Returns the server's reply.

End Sub

Password Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPasswordPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPasswordPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPasswordPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPasswordPropertyS"}

Returns or sets the password of the current user on the server. Read/Write and available at run time
and design time.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Password [= string]

Visual FoxPro Object.Password[= cPassword]
Visual C++ CString GetPassword();

void SetPassword(LPCTSTR lpszNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String (CString object in Visual C++)

Remarks
If the UserId and the Password properties are set before invoking the Authenticate method, the
arguments for the Authenticate method need not be specified. This is shown in the code below:
Private Sub cmdAuthenticate_Click()

FTP1.UserID = "anonymous"
FTP1.Password = "johnD@Mycompany.com"
FTP1.Authenticate ' UserId and password arguments

' aren't required if set previously.
End Sub

Quit Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtQuitEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtQuitEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtQuitEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtQuitEventS"}

Occurs after the Quit method is invoked.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_Quit

Visual FoxPro PROCEDURE Object.Quit
Visual C++ void dialogclass::OnQuitControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

Busy Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtBusyEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtBusyEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtBusyEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtBusyEventS"}

Occurs when a command is in progress or when a command has completed.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_Busy(ByVal isBusy As Boolean)

Microsoft Visual
FoxPro

PROCEDURE Object.Busy
LPARAMETERS lBusy

Microsoft Visual C++ void dialogclass::OnBusyControl(BOOL isBusy);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

isBusy Indicates whether or not a
command is in progress.

Visual FoxPro lBusy Indicates whether or not a
command is in progress.

Microsoft Visual C++ isBusy Indicates whether or not a
command is in progress.

Settings
The settings for Busy are:

Setting Description
True A command is in progress.
False No command is in progress.

Busy Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBusyPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBusyPropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBusyPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBusyPropertyS"}

Returns a value indicating whether a command is in progress. Read-only and unavailable at design
time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.Busy

Microsoft Visual
FoxPro

Object.Busy

Microsoft Visual C++ BOOL GetBusy();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The Busy property settings are:

Setting Description
True A command is in progress.
False No command is in progress.

Cancel Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtCancelEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtCancelEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtCancelEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtCancelEventS"}

Occurs after a cancellation request has been completed and satisfied. After this event, the object's
state changes to idle.

Syntax
Development Tool Syntax
Microsoft Visual Basic and
Microsoft Access

object_Cancel ()

Microsoft Visual FoxPro PROCEDURE Object.Cancel
Microsoft Visual C++ void dialogClass::OnCancelControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

Cancel Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCancelMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCancelMethodX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthCancelMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCancelMethodS"}

Cancels a pending request.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.Cancel

Microsoft Visual
FoxPro

Object.Cancel()

Microsoft Visual C++ void Cancel();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

DocInput Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDocInputEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDocInputEventX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDocInputEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDocInputEventS"}

Occurs when input data has been transferred from a control.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_DocInput (ByVal DocInput As DocInput)

Microsoft Visual
FoxPro

PROCEDURE Object.DocInput
LPARAMETERS oDocInput

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

DocInput Object describing document input
data for the current transfer.

Microsoft Visual
FoxPro

oDocInput Object describing document input
data for the current transfer.

Remarks
Use the properties and methods of the DocInput object to assess the state of a data transfer. For
example, you can construct a progress bar using the values of the BytesTotal, BytesTransferred
and State properties. This is shown in the code below:
Sub HTTP1_DocInput(DocInput As DocInput)

Select Case DocInput.State
Case icDocBegin ' Begin transfer

ProgressBar1.Visible = True ' Show bar.
ProgressBar1.Max = DocInput.BytesTotal
ProgressBar1.Value = 0

Case icDocData ' Reset bar value.
ProgressBar1.Value = DocInput.BytesTransferred

Case icDocEnd
ProgressBar1.Visible = False ' Hide bar.

End Select
End Sub
For more information See "Using DocInput and DocOutput Objects."

DocInput Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDocInputPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDocInputPropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDocInputPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDocInputPropertyS"}

Returns a reference to a DocInput object. Use this property to access properties of the DocInput
object. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.DocInput

Microsoft Visual
FoxPro

Object.DocInput

Data Type
DocInput

Remarks
Properties of the DocInput object can be set before invoking the SendDoc method or they can be
passed as arguments to this method.
NNTP1.DocInput.FileName = "messages.txt"
NNTP1.DocInput.Headers = myDocHeaders
NNTP1.SendDoc URLs

' This can also be coded as:
NNTP1.SendDoc URLs, myDocHeaders, "messages.txt"
The DocInput object is also used for conveying information about the progress of the document
transfer and for data linking and streaming. Use the BytesTransferred and BytesTotal properties as
shown below:
' Assuming there is a label called lblStatus.
lblStatus.Caption = NNTP1.DocInput.BytesTransferred

DocOutput Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDocOutputEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDocOutputEventX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDocOutputEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDocOutputEventS"}

Occurs when output data has been transferred from the control. Use the reference to the DocOuput
object contained in this event to parse data and send it to an appropriate destination.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_DocOutput (ByVal DocOutput As
DocOutput)

Microsoft Visual
FoxPro

PROCEDURE Object.DocOutput
LPARAMETERS oDocOutput

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

DocOutput Object describing document
output data for the current
transfer.

Microsoft Visual
FoxPro

DocOutput Object describing document
output data for the current
transfer.

Remarks
The reference to the DocOutput object contained in this event can be used to access all the
properties and methods of the DocOutput object. Use the State property to examine the data stream
before processing it further. The code example shows the basic method of using the State property
with a Select Case statement.
NNTP1_DocOutput(DocOuput As DocOutput)

Dim vtData As Variant ' Data variable.
Select Case DocOutput.State
Case icDocNone '

' Handle no event here
Case icDocBegin

' Handle beginning of doc transfer.
Case icData ' Data

' Retrieve the Data
DocOutput.GetData vtData
txtData = txtData & vbCrLf & vtData

Case icDocError
' Handle errors here.

Case DocHeaders
txtHeads = txtHeads & vbCrLf & DocOuput.Headers

Case icDocEnd
' Handle end of transfer here.

End Select
End Sub
For more information See "Using DocInput and DocOutput Objects."

DocOutput Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDocOutputPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDocOutputPropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDocOutputPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDocOutputPropertyS"}

Returns a reference to the DocOutput object. Returns a reference to a DocInput object. Use this
property to access properties of the DocOutput object. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.DocOutput

Microsoft Visual
FoxPro

Object.DocOutput

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
DocOutput

Remarks
Properties of the DocOutput object can be set before invoking the GetDoc method or they can be
passed as arguments to this method.
NNTP1.DocOutput.FileName = "messages.txt"
NNTP1.DocOutput.Headers = myDocHeaders
NNTP1.GetDoc URLs

' This can also be coded as:
NNTP1. GetDoc URLs, myDocHeaders, "messages.txt"
The DocOutput object is also used for conveying information about the progress of the document
transfer and for data linking and streaming. Use the BytesTransferred and BytesTotal properties as
shown below:
' Assuming there is a label called lblStatus.
lblStatus.Caption = NNTP1. DocOutput.BytesTransferred

EnableTimer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproEnableTimerPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEnableTimerPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEnableTimerPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnableTimerPropertyS"}

Sets a value that enables the TimeOut event. Write only at run time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.EnableTimer(event) [= boolean]

Microsoft Visual
FoxPro

Object.EnableTimer(nEvent) [= lExpression]

Microsoft Visual C++ void SetEnableTimer(short event, BOOL
bNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft Access
and Visual Basic

event Integer A value that determines the type
of Timeout event that will be
enabled. See Settings below.

boolean Boolean A value that determines if the
specified TimeOut event will be
enabled. See Settings below.

Visual FoxPro nEvent Numeric A value that determines the type
of Timeout event that will be
enabled. See Settings below.

lExpressio
n

Logical A value that determines if the
specified TimeOut event will be
enabled. See Settings below.

Visual C++ event Integer A value that determines the type
of Timeout event that will be
enabled. See Settings below.

bNewValu
e

Boolean A value that determines the type
of Timeout event that will be
enabled. See Settings below.

Settings
The settings for event and nevent are:

Constant Value Description
prcConnectTimeout 1 Timeout for connect. If connection is not

established within the timeout period,
Timeout event will be fired.

prcReceiveTimeout 2 Timeout for receiving data. If no data
arrives within the timeout period, Timeout
event will be fired.

prcUserTimeout 65 Timeout for user defined event. User should
use prcUserTimeout + [Integer] range for
custom timeout events.

The settings for boolean and lExpression are:

Constant Value Description
True -1 The timer for this event will be enabled.
False 0 The timer for this event will not be enabled.

Remarks
Use the TimeOut property to set the time for any event.

You can enable the timer for each of the different event types using the code below:
With NNTP1

.EnableTimer(prcConnectTimeout)= True

.EnableTimer(prcReceiveTimeout)= True

.EnableTimer(prcUserTimeout)= True
End With

Errors Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproErrorsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproErrorsPropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproErrorsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproErrorsPropertyS"}

Returns a reference to the icErrors collection. The collection can be accessed for details about the
last error that occurred. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.Errors

Microsoft Visual
FoxPro

Object.Errors

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Errors

Remarks
The Errors property can be used within an Error event if information passed through the Error event
is not sufficient, as shown below.
Private Sub HTTPCT1_Error(Number As Integer, _
Description As String, Scode As Long, Source As _
String, HelpFile As String, HelpContext As _
Long, CancelDisplay As Boolean)

Dim strErrs As String ' String variable.
Dim errCol As icErrors ' icErrors collection

' variable.
Set errCol = HTTP1.Errors ' Set the variable.
' Iterate through the collection and place
' results in a string variable.
For Each icError in errCol

strErrs = strErrs & icError.Code & _
icError.Description & " " & vbCrLf

Next

MsgBox strErrs ' Show all errors.
End Sub

icError Object, icErrors Collection, Errors Property Example

The example below uses the Errors Property of an HTTP control to retrieve a reference to the
icErrors collection. The code executes when the DocOutput event occurs, which contains a reference
to the DocOutput object. If the State property of the DocOutput object is icDocError (4), then the
code iterates through each icError object and places the Code and Description into a string
variable. Finally, the code writes the string variable into a TextBox control named "txtErrors."
Sub HTTPCT1.DocOutput(ByVal DocOutput As DocOutput)

Dim strErrs As String ' Message variable.
Dim errCol As icErrors ' icErrors collection

' variable.

Select Case DocOutput.State
Case icDocError

Set errCol = HTTP1.Errors ' Set the variable.

' Iterate through the collection and place
' results in a string variable.
For Each icError in errCol

strErrs = strErrs & icError.Code & _
icError.Description & " " & vbCrLf

Next
Case icDocData

' Handle DocData.
End Select

' Write the collection into a TextBox control named
' txtErrors.
txtErrors.Text = txtErrors & strErrs

End Sub

GetDoc Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDocMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDocMethodX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetDocMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDocMethodS"}

A DocOutput related method that requests retrieval of a document identified by a URL.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.GetDoc [URL,] [Headers,] [OutputFile]

Microsoft Visual
FoxPro

Object.GetDoc([cURL] [, cHeaders] [, cOutputFile])

Microsoft Visual C++ void GetDoc(const VARIANT& URL, const
VARIANT& Headers, const VARIANT& OutputFile
);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Microsoft Access and Visual Basic
Argument Default Data Type Description
URL DocInput. URL String Optional. The URL

identifying the remote
document to be
retrieved. For Input
only.

Headers DocInput. Headers DocHeaders Optional. Headers
used for requesting
the document. This
argument only applies
to protocols where
request headers can
be specified (for
example, HTTP). For
Input only.

OutputFile DocOutput. Filename String Optional. A local file to
which the retrieved
document will be
written.

Microsoft Visual FoxPro
Argument Default Data Type Description
cURL DocInput.URL Character

expression
Optional. The URL
identifying the remote
document to be
retrieved. For Input
only.

cHeaders DocInput.Headers Character
expression

Optional. Headers
used for requesting
the document. This
argument only applies
to protocols where
request headers can
be specified (for
example, HTTP). For
Input only.

cOutputFile DocOutput.Filename Character
expression

Optional. A local file to
which the retrieved
document will be
written.

In Microsoft Visual C++, all the parameter types of GetDoc are VARIANT.

Remarks
The GetDoc method permits retrieving a file from the server.

The URL and (for some controls) Headers are used as inputs specifying which document is to be
retrieved. The OutputFile argument indicates where the retrieved document should be written locally.

The URL type (first part up to the colon) can be omitted and defaults to the correct type for this
control. For example, when using the HTTP control, the "http:" string can be omitted.

For basic use of this control, arguments should be passed to GetDoc to describe the document
transfer. For more powerful use of this control, the DocInput and DocOutput objects can be used in
conjunction with the DocInput and DocOutput events. The arguments of GetDoc correspond to
properties in the DocInput and DocOutput objects of this control. DocInput and DocOutput
properties can be set before calling GetDoc to avoid passing arguments. The DocInput and
DocOutput events can also be used for transferring data using streaming rather than local files.

Method Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMethodPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMethodPropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMethodPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMethodPropertyS"}

Returns or sets the method used to retrieve or post (send) the document. Available at run time and
design time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.Method [= integer]

Microsoft Visual
FoxPro

Object.Method[= nValue]

Microsoft Visual C++ long GetMethod();
void SetMethod(long nNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Integer.

Settings
The possible values for integer and nValue are:

Constant Value Description
prcGet 1 Default. Get method requests the whole

document.
PrcHead 2 Head method requests only the headers of a

document.
PrcPost 3 Post method posts a document to the server as

a sub-ordinate of the document specified by the
URL.

PrcPut 4 Put method method puts a document to the
server. The document is to replace an existing
document specified by the URL.

ProtocolStateChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtProtocolStateChangedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtProtocolStateChangedEventX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtProtocolStateChangedEventA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtProtocolStateChangedEventS"}

This event occurs whenever the protocol state changes.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_ProtocolStateChanged (ByVal
ProtocolState As Integer)

Microsoft Visual
FoxPro

PARAMETERS Object.ProtocolStateChanged
LPARAMETERS nState

Microsoft Visual C++ void
dialogclass::OnProtocolStateChangedControl(sho
rt ProtocolState);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Refer to the ProctocolState property for possible values of the state argument.

SendDoc Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSendDocMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSendDocMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSendDocMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSendDocMethodS"}

A DocInput related method that requests sending a document identified by a URL.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.SendDoc [URL,] [Headers,] [InputData,]
[InputFile,] [OutputFile]

Microsoft Visual
FoxPro

Object.SendDoc([cURL] [, cHeaders]
[, eInputData] [, cInputFileName]
[, cOutputFileName])

Microsoft Visual C++ void SendDoc(const VARIANT& URL, const
VARIANT& Headers, const VARIANT& InputData,
const VARIANT& InputFile, const VARIANT&
OutputFile);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Microsoft Access and Visual Basic

Argument Default Data Type Description
URL DocInput.URL STRING Optional. The URL

identifying the remote
document to be sent. If
specified, the URL property
will be set to this value. For
input only.

Headers DocInput.
Headers

DocHeaders Optional. Headers used for
sending the document. This
argument only applies to
protocols where document
headers can be sent (for
example, SMTP and HTTP).
For input only.

InputData DocInput.
SetData

Variant Optional. A data buffer
containing the document to
be sent. For input only.

InputFile DocInput.
Filename

STRING Optional. A local file
containing the document to
be sent. For input only.

OutputFile DocOutput.
Filename

STRING Optional. A local file to which
a reply document is written.
This argument only applies
for protocols that return a

reply document (for
example, HTTP). For input
only.

Visual FoxPro
Argument Default Data Type Description
cURL DocInput.URL Character

expression
Optional. The URL
identifying the remote
document to be sent. If
specified, the URL property
will be set to this value. For
input only.

cHeaders DocInput.
Headers

Character
expression

Optional. Headers used for
sending the document. This
argument only applies to
protocols where document
headers can be sent (for
example, SMTP and HTTP).
For input only.

eInputData DocInput.
SetData

Optional. A data buffer
containing the document to
be sent. For input only.

cInputFile DocInput.
Filename

Character
expression

Optional. A local file
containing the document to
be sent. For input only.

cOutputFile DocOutput.
Filename

Character
expression

Optional. A local file to which
a reply document is written.
This argument only applies
for protocols that return a
reply document (for
example, HTTP). For input
only.

In Microsoft Visual C++, all the parameter types of SendDoc are VARIANT.

Remarks
The SendDoc method permits sending (posting or putting) a file to the server.

The URL and (for some controls) Headers are used as inputs describing the document to be sent.
The InputData and InputFile arguments (only one can be specified) contain the document to be sent.
For controls such as HTTP that return a reply document, the OutputFile argument indicates where the
reply document should be written locally.

The URL type (first part up to the colon) can be omitted and defaults to the correct type for this
control. For example, when using the HTTP control, the "http:" string can be omitted.

For basic use of this control, arguments should be passed to SendDoc to describe the document
transfer. For more powerful use of this control, the DocInput and DocOutput objects can be used in
conjunction with the DocInput and DocOutput events. The arguments of SendDoc correspond to
properties in the DocInput and DocOutput objects of this control. DocInput and DocOutput
properties can be set before calling SendDoc to avoid passing arguments. The DocInput and
DocOutput events can also be used for transferring data using streaming rather than local files.

State Property (Internet Control Pack)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproICPStateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproICPStateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproICPStateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproICPStateS"}

Returns the connection state of the control. Read-only and unvailable at design time.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object.State

Microsoft Visual
FoxPro

Object.State

Microsoft Visual C++ short GetState();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Microsoft Access, Visual Basic, and
Visual C++

Visual FoxPro

Integer Numeric

Settings
The settings for the State property are:

Constant Value Description
prcConnecting 1 Connecting. Connect has been requested,

waiting for connect acknowledge.
prcResolvingHost 2 Resolving Host. This state happens only if

RemoteHost property is in name format
(rather than dot-delimited IP format)

prcHostResolved 3 Resolved the host. This state occurs only if
ResolvingHost state has been entered
previously

prcConnected 4 Connection established.
prcDisconnecting 5 Connection close/disconnect has been

initiated
prcDisconnected 6 This is the initial state when the protocol

object is instantiated, before Connect has
been been initiated or after a Connect
attempt failed or after Disconnect was
performed.

StateChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtStateChangedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtStateChangedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtStateChangedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtStateChangedEventS"}

Occurs whenever the transport state changes. The state is given in the State property.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_StateChanged (ByVal State As Integer)

Microsoft Visual
FoxPro

PROCEDURE Object.StateChanged
LPARAMETERS nState

Microsoft Visual C+
+

void dialogclass::OnStateChangedControl(short
State);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for the State and nState are:

Constant Value Description
prcConnecting 1 Connecting. Connect has been

requested, waiting for connect
acknowledge.

prcResolvingHost 2 Resolving Host. This state
happens only if RemoteHost
property is in name format
(rather than dot-delimited IP
format)

prcHostResolved 3 Resolved the host. This state
occurs only if ResolvingHost
state has been entered
previously

prcConnected 4 Connection established.
prcDisconnecting 5 Connection close/disconnect

has been initiated
prcDisconnected 6 This is the initial state when the

protocol object is instantiated,
before Connect has been been
initiated or after a Connect
attempt failed or after
Disconnect was performed.

TimeOut Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtTimeOutEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtTimeOutEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtTimeOutEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtTimeOutEventS"}

Occurs when the specified event does not take place within the interval defined in the property
Timeout for that event. Set continue to True to continue.

Syntax
Development Tool Syntax
Microsoft Visual
Basic and Microsoft
Access

object_TimeOut (ByVal event As Integer, Continue
As Boolean)

Microsoft Visual
FoxPro

PROCEDURE Object.TimeOut
LPARAMETERS nEvent, lContinue

Microsoft Visual C+
+

void dialogclass::OnTimeoutControl(short event,
BOOL FAR* Continue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

event Defines the event to which the time
interval applies.

Continue Boolean value that determines if
the timer will remain active.

Visual FoxPro nEvent Defines the event to which the time
interval applies.

lContinue Logical value that determines if the
timer will remain active.Defines the
event to which the time interval
applies.

Settings
The settings for event and nEvent are:

Constant Value Description
prcConnectTimeout 1 Timeout for connect. If connection is not

established within the timeout period,
Timeout event will be fired.

prcReceiveTimeout 2 Timeout for receiving data. If no data
arrives within the timeout period, Timeout
event will be fired.

prcUserTimeout 65 Timeout for user defined event. User should
use prcUserTimeout + [Integer] range for
custom timeout events.

The settings for continue are:

Setting Description
True The timer continues.
False (Default) The timer stops.

Remarks
Use the event argument to determine the type of event that has expired. For example, the following
code handles all three cases:
HTML_Timeout(ByVal event as Integer, continue As Boolean)
Select Case event

Case prcConnectTimeout
' Handle the connection timeout.

Case prcReceiveTimeout
' Ignore the Receive timeout.

Case prcUserTimeout
' Handle the User defined timeout.

End Select
End Sub

URL Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproURLPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproURLPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproURLPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproURLPropertyS"}

Returns or sets a Universal Resource Locator (URL) string identifying the current document being
transferred. Read/write and available at run time.

Syntax
Development Tool Syntax
Microsoft Visual Basic
and Microsoft Access

object.URL [= String]

Microsoft Visual FoxPro Object.URL[= cURLString]
Microsoft Visual C++ CString GetURL();

void SetURL(LPCTSTR lpszNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development Tool Argument Description
Microsoft Access and
Visual Basic

String Valid URL.

Visual FoxPro cURLString Valid URL.
Visual C++ lpszNewValue Valid URL.

Data Type
String (CString in Visual C++)

Remarks
URL may be set before calling the GetDoc or SendDoc method of the control, or it may be passed as
an argument to these methods. If it is passed as an argument, the URL property will be set to the
argument value.

In the HTTP control, the URL property identifies an HTTP request of any kind. The URL type (first part
up to the colon) may be omitted. In this case, it will default to the correct type for this control. For
example, the http: string may be omitted when using the HTTP control.

UserID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproUserIdPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUserIdPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUserIdPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUserIdPropertyS"}

Returns or sets the user identification number or name to be used during authentication transactions.
Read/Write and available at run time and design time.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.UserId [= string]

Visual FoxPro Object.UserId[= cIDNumber]
Visual C++ CString GetUserId();

void SetUserId(LPCTSTR lpszNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String (CString object in Visual C++)

Remarks
If the UserId and the Password properties are set before invoking the Authenticate method, the
arguments for the Authenticate method need not be specified. This is shown in the code below:
Private Sub cmdAuthenticate_Click()

FTP1.UserID = "anonymous"
FTP1.Password = "johnD@Mycompany.com"
FTP1.Authenticate ' UserId and password arguments

' aren't required if set previously.
End Sub

Connect Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthConnectMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthConnectMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthConnectMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthConnectMethodS"}

Initiates connection to a remote machine. If a connection is established, the StateChanged event
occurs.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Connect [RemoteHost,] [RemotePort]

Visual FoxPro Object.Connect([cRemoteHost] [, nRemotePort])
Visual C++ void Connect(const Variant& RemoteHost, const

Variant& RemotePort);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data Type Description

Microsoft
Access, Visual
Basic, and
Visual C++

RemoteHost Variant Optional. If this argument is
missing, Connect will
connect to the remote host
specified in the
RemoteHost property.
For Input only.

RemotePort Variant Optional. If this parameter
is missing, Connect will
connect to the remote port
specified in the
RemotePort property.
For Input only.

Visual FoxPro cRemoteHost Character Optional. If this parameter
is missing, Connect will
connect to the remote host
specified in the
RemoteHost property.
For Input only.

nRemotePort Numeric Optional. If this parameter
is missing, Connect will
connect to the remote port
specified in the
RemotePort property.
For Input only.

Remarks

If the connection is successfully established, the Connect event will occur. If an error occurs during
connection, the Error event will occur

Error Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtErrorEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtErrorEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtErrorEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtErrorEventS"}

Occurs whenever an error occurs in background processing (for example, failed to connect, or failed
to send or receive in the background).

Syntax
Development Tool Syntax
Access and Visual
Basic

object_Error(ErrCode As Integer, Description As
String, Scode As Long, Source As String,
HelpFile As String, HelpContext As Long,
CancelDisplay As Boolean)

Visual FoxPro PROCEDURE Object.Error
LPARAMETERS nShortErrCode, cDescription,
nLongErrorCode, cSource, cHelpFile,
nHelpContextID, lCancelDisplay

Visual C++ void dialogclass::OnErrorControl(short Number,
BSTR FAR* Description, long Scode, LPCTSTR
Source, LPCTSTR HelpFile, long HelpContext,
BOOL FAR* CancelDisplay);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Description

Access and
Visual Basic

ErrCode An integer that defines the error code.

Description String containing error information.
Scode The long SCODE
Source String describing the error source.
HelpFile String containing the help file name.
HelpContext Help file context.
CancelDisplay Indicates whether to cancel the display.

The default is FALSE, which is to
display the default error message box.
If you do not want to use the default
message box, set CancelDisplay to
TRUE.

Visual FoxPro nShortErrCode An numeric value that defines the error
code.

cDescription A character string containing error
information.

nLongErrorCode The numeric long SCODE.
cSource A character string describing the error

source.
cHelpFile A character string containing the help

file name.

nHelpContextID The numeric Help file context ID.
lCancelDisplay Indicates whether to cancel the display.

The default is false (.F.), which displays
the default error message box. If you
do not want to use the default message
box, set lCancelDisplay to true (.T.).

Visual C++ Number A short that defines the error code.
Description 32-bit character pointer to a string

containing error information.
Scode The long SCODE
Source 32-bit pointer to a constant character

string describing the error source.
HelpFile 32-bit pointer to a constant character

string containing the help file name.
HelpContext Help file context.
CancelDisplay Indicates whether to cancel the display.

The default is FALSE, which is to
display the default error message box.
If you do not want to use the default
message box, set CancelDisplay to
TRUE.

Internet References
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscInternetOverviewC"}

The RFC documents cited in the ActiveX™ Controls Pack are available for anonymous downloading
from the following site:
ftp://ds.internic.net/rfc
Documents available at this site include:

Document Title Control
rfc977 Network News Transfer Protocol NNTP
rfc959 File Tansfer Protocol (FTP) FTP
rfc821 Simple Mail Transport Protocol SMTP
rfc1081 Post Office Protocol—Version 3 POP

The MIME (Multipurpose Internet Mail Extensions) protocol (RFC1521) is available at:
ftp://thumper.bellcore.com/pub/nsb
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs
http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html
General references on HTML can be found at the following:
http://akebono.stanford.edu/yahoo/Computers/World_Wide_Web/HTML/
http://oneworld.wa.com/htmldev.devpage/dev-page.html

ProtocolState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproProtocolStatePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproProtocolStatePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproProtocolStatePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproProtocolStatePropertyS"}

Returns the current state of the protocol. Protocol states vary according to the control. Read-only and
unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.ProtocolState [= integer]

Visual FoxPro Object.ProtocolState[= nProtocolState]
Visual C++ short GetProtocolState();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for integer, nProtocolState , and the return from GetProtocolState are listed by control
below:

FTP Control
Constant Value Description
ftpBase 0 Default. Base state before connection

server is established.
ftpAuthorization 1 Authorization is being performed.
ftpTransaction 2 Authorization has been performed

successfully, the client has successfully
identified itself to the FTP server.

HTTP Control
Constant Value Description
prcBase 0 Default. Base state before connection

server is established.
prcTransaction 1 Connection to server is established. This is

the valid state for invoking methods with
the control.

POP Control
Constant Value Description
prcNone 0 Base state before connection server is

established.
prcAuthorization 1 Authorization is being performed.
prcTransaction 2 Authorization has been performed

successfully, the client has successfully
identified itself to the POP3 server and the
POP3 server has locked and released the
appropriate maildrop.

prcUpdate 3 Occurs when the Quit command is issued
from the transaction state.

RemoteHost Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRemoteHostPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRemoteHostPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRemoteHostPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemoteHostPropertyS"}

Returns or sets the remote machine to which a control sends or receives data. You can either provide
a host name, such as "ftp.microsoft.com," or an IP address string in dotted format, for example
"100.0.1.1". If the control uses the Connect method, the RemoteHost property will be used if the
RemoteHost argument is not supplied. Read/Write and available at design time.

· For the Winsock UDP control, returns or sets the remote machine to which to send UDP data.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.RemoteHost = string

Visual FoxPro Object.RemoteHost[= cRemoteMachine]
Visual C++ CString GetRemoteHost();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String (CString in Visual C++)

Default Value
Empty

RemotePort Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRemotePortPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRemotePortPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRemotePortPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemotePortPropertyS"}

Returns or sets the remote port number to connect to. Read/Write and available at design time.

· For WinSock client applications, this is the remote port number to which to connect if the
RemotePort argument of the Connect method is not specified.

· For WinSock server applications, after an incoming connection request triggers the
ConnectionRequest event, this property contains the port that the remote machine uses to connect
to this server.

· For the WinSocket UDP control, after the DataArrival event, this property contains the remote port
that is sending the UDP data.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.RemotePort = long

Visual FoxPro Object.RemotePort[= nPortNumber]
Visual C++ long GetRemotePort();

void SetRemotePort(long nNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Development Tool Type
Microsoft Access,
Visual Basic, and
Visual C++

Long

Visual FoxPro Numeric

ReplyCode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproReplyCodePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproReplyCodePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproReplyCodePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproReplyCodePropertyS"}

Returns the value of the reply code, which is a protocol-specific number that determines the result of
the last request, as returned in the ReplyString property. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.ReplyCode [= long]

Visual FoxPro Object.ReplyCode[= nReplyValue]
Visual C++ long GetReplyCode();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type

Long

ReplyString Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproReplyStringPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproReplyStringPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproReplyStringPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproReplyStringPropertyS"}

Returns the last reply string sent by the FTP Server to the client as a result of a request.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.ReplyString [= String]

Visual FoxPro Object.ReplyString[= cReplyString]
Visual C++ CString GetReplyString();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String (CString in Visual C++)

Remarks
Use the ReplyString property in an event to retrieve the result of a request. For example, the
following code invokes the System method on a FTP control. Consequently, the System event
occurs, and the server's reply is returned using the ReplyString property:
Private Sub cmdSystem_Click()

FTP1.System ' Invoke the System method.
End Sub

Private Sub NNTP1_System()
' In the corresponding event, use the ReplyString
' property to retrieve the server's reply.
MsgBox FTP1.ReplyString

End Sub

TimeOut Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTimeOutPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTimeOutPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTimeOutPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTimeOutPropertyS"}

Returns or sets the time that must elapse before the Timeout event occurs.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.TimeOut [=long]

Visual FoxPro Object.TimeOut[= nTimeoutValue]
Visual C++ long GetTimeOut(short event);

void SetTimeOut(short event, long nNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Long

NotificationMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNotificationModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNotificationModePropertyX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNotificationModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNotificationModePropertyS"}

Returns or sets a value that determines when notification is issued for incoming data. Notification can
also be suspended.

Syntax
Development Tool Syntax
Microsoft Visual Basic
and Microsoft Access

object.NotificationMode [= Integer]

Microsoft Visual
FoxPro

Object.NotificationMode[= nMode]

Microsoft Visual C++ short GetNotificationMode();
void SetNotificationMode(short nNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Integer

Settings
The values for Integer, nMode, and nNewValue are:

Value Description
0 Default. COMPLETE: notification is provided when

there is a complete response.
1 CONTINUOUS: an event is repeatedly activated when

new data arrives from the connection.

Connect Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtConnectEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtConnectEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtConnectEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtConnectEventS"}

Occurs when a connection has been successfully established. After this event is triggered, you can
send or receive data on the control.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_Connect

Visual FoxPro PROCEDURE Object.Connect
Visual C++ void dialogclass::OnConnectControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

Quit Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthQuitMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthQuitMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthQuitMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthQuitMethodS"}

Initiates a Quit request. If successful, the corresponding Quit event occurs, otherwise the Error event
occurs.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.Quit

Visual FoxPro Object.Quit()
Visual C++ void Quit();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None.

NOOP Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthNOOPMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthNOOPMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthNOOPMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthNOOPMethodS"}

Issues the NOOP command to the server. This command requests an OK reply from the server.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.NOOP

Visual FoxPro Object.NOOP()
Visual C++ void NOOP();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

Remarks
Use the ReplyString property to determine the result of this call.

Getting Started
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscGettingStartedC"}

Welcome to the Internet ActiveX™ Controls Pack . The present package includes controls that can be
used with Microsoft Access, Visual Basic, Visual C++ and Visual FoxPro. With these controls, you can
create applications that work over any network supporting one of the following protocols: TCP/IP, FTP,
HTTP, SMTP, and POP3.

Before the introduction of the Internet ActiveX Controls ,, creating applications that could access the
rich information sources of the Internet required learning about various low level Winsock Application
Programming Interfaces (APIs) as well as the various protocols. The Internet ActiveX Controls hide
the complexity of creating Internet programs while exposing the versatility and power of ActiveX
controls.

The Internet ActiveX Controlsconsist of the following controls:

· WinSock TCP control—used to stream data between networked machines. This is a connection-
based control, meaning the communicating machines have an explicit connection.

· WinSock UDP control—used to stream data between machines, but without requiring an explicit
connection.

· FTP Client control—allows you to connect to a remote machine, examine its directories, send and
retrieve data using the File Transfer Protocol.

· HTTP control—the HyperText Transfer Protocol is the protocol used for World Wide Web sites.
This control allows you to gather data which can be parsed, filtered, or placed in a database.

· HTML control—The HyperText Markup Language is used to create World Wide Web documents.
This control translates the language into viewable pages, allowing you to create your own custom
Web browser. The control currently supports HTML version 2.0.

· POP control—The Post Office Protocol (version 3) is the most commonly used protocol for email
on the Internet. With this control you can create a virtual post office to store email messages.

· SMTP control—The Simple Mail Transfer Protocol is used to send email messages on the
Internet. With this control you can send email messages from any application.

· NNTP Client control— The Network News Transfer Protocol control is used to connect to a news
server, retrieve a list of available newsgroups and their descriptions, enter a newsgroup, retrieve
lists of articles or particular articles.

Other Requirements for the Internet
To use these controls on the Internet, you also need the following:

· An Internet provider—a local commercial service that provides you access to the Internet.
· A modem or ISDN line—a physical connection between you and your Internet provider.
· Either a PPP (Point to Point Protocol) or a SLIP (Serial Line Internet Protocol)—provided by your

Internet service. This allows you to fully access the graphic capabilities of the Internet.
The ActiveX Controls are designed with productivity and ease of use in mind. To this end, all you
need ¾ besides the controls ¾ is to connect to your Internet provider, start up your application (Visual
Basic, Visual C++, Visual FoxPro, or Microsoft Access), and begin programming.

Requirements for Networks: Know Your Local Protocols
If you are using the controls on a local area network, you need only know which protocols are
supported on the network. For example, most networks support the TCP/IP protocol, and this allows
you to use the WinSock UDP or TCP controls. The following table shows the protocols supported by
the controls.

Control Protocol Supported
FTP File Transport Protocol (FTP)

HTML HyperText Transfer Protocol (HTTP)
HTTP HTTP
NNTP Network News Transport Protocol (NNTP)
POP Post Office Protocol, version 3 (POP3)
SMTP Simple Mail Transport Protocol (SMTP)
WinSock TCP Transmission Control Protocol/Internet

Protocol (TCP/IP)
WinSock UDP UDP/IP

Installing the Controls
Methods to install the controls into the toolbox differ according to the application you are using.

In Visual Basic:

1. On the Tools menu,, click Custom Controls.
2. From Available Controls, select the control you want to use.
3. Click OK.

In Visual FoxPro:

1. On the Tools menu, click Options.
2. Choose the Controls tab, then click the OLE controls option. Be sure the Controls check box is

selected.
3. Under Selected, select the controls you wish to install.
4. Click Set as Default if you'd like to make these controls available in every Visual FoxPro session.
5. Click OK..

In Microsoft Access:

While in form Design view:

1. On the Insert menu, click Custom Control…
2. Select the custom control you want to insert.
3. Click OK.

If the custom control does not appear in the custom control dialog, it may not be correctly registered
on your machine. To register a custom control:

1. On the Tools menu, click Custom Controls.
2. Choose the Register button and locate the custom control .OCX or .DLL file to register.
3. Click OK.

In Visual C++:

Note: ActiveX controls are added to individual Visual C++ projects. To use an ActiveX control in
multiple projects, you must add it to each project in which you want to use it.

1. From the Insert menu, choose Component, -- OR -- Click the Component Gallery button. The
Component Gallery dialog box appears.

2. In Component Gallery, select the OLE Controls pane (page, tab).
3. Select the control and click the Insert button. The Confirm Classes dialog box appears. This dialog

lists the names for the C++ class, header file, and implementation file for each control begin added.
4. In the Confirm Classes dialog box, click OK. The control is added to the control pallet in the dialog

template editor, and header and implementation files are added to the current project for this
control.

Common Terminology
The following is a short list of terms that occur in the documentation:

Client An application designed to connect to a remote machine and access data on the other
machine. Part of a Client/Server relationship.

Data Streaming The transfer of data in a continuous stream of bytes, allowing transactions such as
real-time sound transmission. Data streaming also allows you to efficiently pour data into a file,
database, or other container.

MIME The Multipurpose Internet Mail Protocol communicates the type of data that is being sent in
an electronic message. For example, a message can contain sound, video, images, as well as text.

Port Number Internet applications use a specific port number to communicate through. There are
common port numbers assigned to types of applications. For example, HTTP servers (used for
retrieving HTML documents) usually send and receive data through port 80.

Protocol A defined convention used to communicate between applications. For example, the HTTP
protocol specifies how HTTP messages should be sent and received.

RFC (Request For Comments) document (as in "RFC 977"). A document authored by an individual
or group involved in the development of the Internet. Such documents define standards or propose
new standards for Internet protocols. These documents are available for downloading from various
sites. See the Internet References topic for specific FTP addresses.

Server An application that provides services and data for a Client application that resides on a
remote machine.

Control Architecture
The Internet ActiveX Controls are designed as a family of controls with a few common interfaces that
allow you to develop applications quickly. Famliarizing yourself with these common interfaces can
save you time later.

DocInput and DocOuput Objects
Features of the Internet ActiveX Controls are the DocInput and DocOutput objects. These objects,
accessible from all except the WinSock controls, have properties and methods that allow you to
stream data from one control to another. For example, using the DocOutput object, you can
automatically stream data from a HTTP server to an FTP control when you wish to archive the data
on an FTP server.

For more information See "Using the DocInput and DocOutput Objects."

The icError Object and Collection
Another common object is the icError object and icErrors collection. The icError object stores error
messages that originate from a network server. As errors may be numerous, the icError object can
be stored in a collection for later retrieval.

For more information See "icError Object" and "icErrors Collection."

DocHeader Object and Collection
Some protocols, such as the MIME and the SMTP, require you to create a collection of document
headers. For example, when sending a mail message, you will see these headers:
From: Jonne@Maui.com
To: TomS@Haleakala.com
Subject: Run to the Sun
Message-Id: 9601138242.AA824256464@mail.Maui.com
Each line in the above example is contained in a single DocHeader object, and all four lines are part
of a DocHeaders collection.

A DocHeader object has two properties: the Name property, and the Value property. The following

code shows how you can create a simple header by first creating an object variable of type
DocHeaders, instantiating the object, and then adding a DocHeader object to the collection.

Dim dhHeads As DocHeaders ' Object variable.
Set dhHeads = New DocHeaders ' Instantiate object.
dhHeads.Add "From", "Jonne@Maui.com " ' Add Header.
' Creates the header "From: Jonne@Maui.com"
' The DocHeader object adds the colon for you.

For more information See "DocHeader Object" and "DocHeaders Collection."

